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A detailed strength analysis for brittle surfaces containing dominant flaws produced 
under elastic-plastic indentation loading is presented. The condition for failure is formu- 
lated in terms of stress intensity factors representing driving forces associated with 
applied tension and residual indentation fields. Incorporation of the second of these 
components depresses the equilibrium applied stress-crack size function; this depression 
is accentuated at small crack size, such that the function passes through a maximum. 
Depending on the relative intensity of the residual indentation field, the starting size of 
the median cracks, as determined from Part 1 of this study, may lie on either side of this 
maximum: "large" cracks, i.e. those starting beyond the maximum, fail spontaneously 
from an unstable branch of the applied stress curve; "small" cracks undergo precursor 
stable growth to a critical depth at the stress maximum before failing. Observations of 
median crack growth in annealed and tempered soda-lime glass discs taken to failure in 
biaxial flexure confirm the existence of an energy barrier to crack instability. The im- 
portant implications of these manifestations of the residual indentation field in predicting 
strength degradation characteristics for prospective adverse contact conditions are dis- 
cussed for test pieces subjected to various imposed surface stress states. 

1. Introduction 
Part 1 of this study described the role of residual 
stress effects in the evolution of median fracture 
beneath sharp indenters [1]. In particular, we 
noted the potential continuation of crack growth 
during the unloading half-cycle of an indentation 
event, and the persistence of a crack driving force 
on completion of this event. With the recent 
development of indentation based theories of 
contact-induced strength degradation for brittle 
surfaces [2 to 11], it is of some importance to 
investigate how such effects might manifest them- 
selves in the response to a subsequent tensile stress 
field. Whilst the existence of residual stress terms 
in the strength degradation equations has been 
previously acknowledged, their full significance 
has been obscured by the special procedures 
adopted to "calibrate" the indentation fracture 
parameters which appear in the formulation 
[6, 11]. Of special concern in this connection is 
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the calibration of an "effective" critical stress 
intensity factor for the test material: indentation- 
strength data yield a value which tends to lie some 
30% below that determined by more conventional 
fracture testing techniques. This means that any 
attempt to predict strength degradation character- 
istics from first principles, using established 
material parameters, is liable to systematic dis- 
crepancy. 

In this paper we modify the earlier degradation 
analyses for sharp indenters by incorporating 
residual stress terms into the strength equations. 
We shall concentrate on crack growth under 
equilibrium conditions, notwithstanding the fact 
that residual stress effects may well be even more 
deleterious in kinetic fracture [12]. Since much 
handling damage on brittle surfaces may have its 
origins in contact events closely resembling the 
sharp-indenter configurations described in Part 1, 
the implications of the present work could be 
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expected to extend to more general theories o f  
strength based on flaw characteristics. 

2. Incorporation of residual-stress terms 
into strength equations 

Consider now the indentation-failure sequence 
o f  Fig. 1. In Fig. la a sharp indenter produces 
penny4ike median cracks, in the manner des- 
cribed in Part 1. It is possible that under the 
combined action of  the indentation load P and 
some appropriate surfaces stress a s the test piece 
may fail spontaneously during the contact event 
[11].  I f  it survives the contact, the degraded test 
surface is subject to premature failure during 
subsequent service. In the latter case the charac- 
teristic radius Co of  the starting penny like flaw 
which determines the ultimate strength may be 
identified with the indentation crack size, i.e. 
either e* or c t ,  whichever is the larger [1].  A 
complete description o f  strength degradation 
characteristics therefore requires an analysis of  
median crack response in an applied tension 
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Figure 1 Indentation-failure model. (a) Vickers indenter 
at normal load produces median crack flaw system of 
characteristic dimension co; (b) cracks extend to dimen- 
sion e under combined action of residual indentation field 
(represented here by "ghost" contact) and applied tensile 
stress a a. Surface stresses (not shown) may also drive the 
cracks. 
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field %, Fig. lb. Our aim in this section will be 
to fulful this requirement. 

As in Part 1, we determine the net mechanical 
force on the fracture system in terms of  additive 
stress intensity factors. Even before application 
of  the tensile field in Fig. lb the median cracks 
experience a residual driving force from the pre- 
ceding indentation event, as defined by the term 

K r  = x~P*/c  3/2 , (1) 

with P* the peak contact load and Xr the assoc- 
iated indenter-specimen constant. Superposition 
o f  the tension % over the crack area gives rise 
to the contribution 

Ka = aa (nae)  1/2, (2) 

where ~ is a crack geometry constant. Finally, if 
the cracks are simultaneously subjected to a uni- 
form surface stress as, , we have a third term, 

Ks, = a s , ( ~ a c ) ' / 2 ;  (3)  

surface stresses may be present in both the indent- 
ation and strength tests (e.g. tempered surfaces, 
as = - - O R  = as'), or in indentation only (e.g. 
surfaces under reversible pre-stress, as v~ 0, a s , =  
0). 

For equilibrium crack growth the net stress 
intensity factor remains constant at a critical 
level, i.e. 

K = K , + K ~ + K  s, = K e. (4) 

Equations 1 to 3 combine with Equation 4 to give 

x1 ,P* / s  3/2 -~- Oa(rf~-~c) 1/2 -/- O-s,(fr~~c) 1/2 = K e  " 

(5) 

An applied stress-crack size relation follows by 
straightforward transformation: 

o a = [ K e / ( r r ~ e )  1/2 ] (1 --  x r P * / K e  e3/2)  - -  a s ' .  

(6) 

The strength, a, is then defined as the value of  o a 
at which the crack propagates spontaneously 
without limit. We may note that Equation 6 
reduces to the standard strength relation, o ~  
K e c  -1/2,  as Xr ~ 0, i.e. as the residual stress effect 
disappears. 

In order to avoid having to specify as' at this 
stage it is convenient to define a "stress function" 

y (c)  : % + as' .  (7)  



We may show from Equation 6 that this function 
has a maximum at 

Y m  = 3 K c / 4 ( T r ~ c m )  1/2 (8a) 

c m = ( 4 x ~ P * / K c )  2/3 (8b) 

and may accordingly be expressed in the "uni- 
versal", normalized form 

,~'~'/~fm = �89 1/2 [4--  (Cm/C)3 '2] .  (9) 

An appropriate plot is given in Fig. 2. The stability 
of crack extension in the applied field is now seen 
to depend on the relative values of Co and Cm. For 
Co > c m ,  the crack system becomes unstable at 
J =~9"(Co), e.g. path 1; the strength is then given 
directly by Equation 7 with o = o a at c = Co, i.e. 

o = 9  ~ (Co)--~s' (Co >Cm)- (lOa) 

For Co <~ cm, however, the crack must first over- 
come an energy barrier to failure by growing 
stably until 5"  = Y m ,  path 2; the strength in this 
case is given by o = Oa at c = cm, i.e. 

0 = ~ m  - - a s '  (C O ~ C m ) .  (lOb) 

Thus, whereas the starting flaw size assumes a 
controlling role in Equation 10a, the only way it 
enters into Equation 10b is via the inequality 
expressing the condition of validity. In this con- 
text it is seen from Equation 8b that the prospect 
of precursor stable growth in a strength test 
increases with the value of X~. 
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Figure 2 Plot of function Equation 9. Path 1 illustrates 
the spontaneous failure mode for flaws in the range 
c o > Cm, path 2 the activated mode involving precursor 
stable growth for flaws in the range c o ~< c m. 
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Figure 3 Schematic of  strength testing set up for follow- 
ing crack growth during application of tensile stress. 

An explicit statement as to which of Equations 
10a and b will determine the degradation charac- 
teristics for any given indenter-specimen system 
requires an evaluation of Co via the formulation of 
Part 1. Before attempting any such evaluation, 
however, we may usefully examine some of the 
essential predictions of the strength analysis by 
observing crack growth directly in our model 
soda-lime glass system [1 ]. 

3. Observations of crack growth during 
strength testing 

The simple experimental setup shown in Fig. 3 
allowed direct monitoring of the indentation 
flaws during application of the tensile field in 
the strength test. Discs, ~ 50mm diameter and 
3 mm thickness, of the same glass used in Part 1, 
were first indented with a Vickers pyramid at 
a maximum load P * =  50N. These were then 
stressed biaxially in a symmetrical ring-on-ring 
arrangement [6], with the contact flaw on the 
tension side. Thesmall  volume enclosed by the 
disc test surface and the lower ring assembly 
was either flushed continuously with dry nitrogen 
or evacuated (~ 1 mPa) during stressing; the discs 
were, of course, exposed to the atmosphere in 
the preceding transferral from the indentation 
to the strength testing equipment, an operation 
carried out usually in less than 30 min. An inverted 
microscope with a constant4nterval, motor-driven 
camera attachment was used to photograph the 
radially expanding median cracks. The applied 
stress level was evaluated, via simple plate theory 
[13], in terms of the flexural loading, with due 
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Figure 4 Growth of median crack in annealed soda-lime 
glass (% = 0 = as') leading to failure in strength test, 
dry N~ conditions: (a) o a =  0, (b) cr a =  28.3MPa, (c) 
o a = 31.5 MPa. Starting crack from Vickers indentation, 
P * =  50 N. (Faintly visible lateral cracks do not extend 
during test.) Width of field 1020 #m. 

allowances for any pressure differences across the 

plate surfaces. 

Photographic sequences of crack response 

during stressing to failure are shown in Figs. 4 and 

5 for indentations on annealed (o s' = 0 )  and 
tempered (o s, = - - 1 2 8 M P a )  surfaces. Consider- 

able subcritical extension is evident. In order to 
verify that this extension occurred under the 

conditions of stable equilibrium envisaged in 
Section 2 and not according to some kinetic 
process, some dummy runs were made with 
halt points in the stress-time loading character- 

istics. Dimensions c were measured as in Fig. lb  
on only one of the orthogonal median cracks, 
that which led to failure of the plate. Typical 
data are shown in Figs. 6 and 7. There is a ten- 

Figure 5 Growth of median crack in tempered soda-lime 
glass (% = -- a R = -- 128 MPa = as,) leading to failure 
in strength test, dry N 2 conditions: (a) % = 0, (b) a a = 
143 MPa, (c) o a = 170 MPa. Starting crack from Vickers 
indentation, P * =  50N. (Lateral cracks do not extend 
during test.) Width of field 1020 ~zm. 

dency for the crack growth to overshoot the 
stress halt points in the annealed glass, indicating 

that non-equilibrium effects are not entirely 
absent. However, the extent of growth during 

the halt periods is dwarfed by that during the 

stress rise time. Moreover, in the tempered glass, 

which generally has a lower susceptibility to 
kinetic fracture [4],  this crack overshoot ten- 

dency could not be detected, within the limits of 

experimental accuracy, at all. It is concluded that 
the role of slow crack growth is secondary to that 

of stable equilibrium growth in the conditions 
of strength testing used in this work.* 

The results of experimental runs investigating 

the relation between applied stress and crack size 
are plotted as the data points in Figs. 8 and 9 for 

*More detailed, numerical calculations of crack response under the test conditions pertaining to Figs. 6 and 7, using 
Equations 1 to 4 in conjunction with the crack velocity data of Wiederhorn et al. for sodaqime glass in vacuum [15], 
confirm that the overshoot is consistent with intrinsic slow crack growth. Similar calculations in the absence of halt 
points show that the kinetic contribution amounts to less than 3% of the total crack extension observed as failure. 
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Figure 6 Time variation of applied stress and crack size 
in vacuum strength test on annealed glass. 

annealed and tempered glass respectively. No 
significant differences were noted between tests 
run in dry nitrogen and vacuum. Most o f  the runs 
were conducted on as-indented surfaces, but  in the 
case of  Fig. 8 three specimens were re-annealed 
after indentat ion to remove the residual stress 
field about the contact  site. As a safeguard against 
the possibili ty that  such re-annealing may have 
caused some crack-tip blunting, the flexural stress 
was initially applied in laboratory  atmosphere 

until a small amount  o f  slow crack growth was 
detected;  then inert environmental conditions 
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Figure 7 Time variation of applied stress and crack size 
in vacuum strength test on tempered glass. 

were restored for the remainder of  the loading 
to failure (cf. Appendix,  Part 1). The full curves 
in Figs. 8 and 9 are the appropriate theoretical  
predictions o f  Equation 6, using Ko = 0.75 MPa 
m 1/2, f ~ = 0 . 3 0  and •  (as-indented) 

or • = 0 (re-annealed). Notwithstanding certain 
systematic discrepancies between theory and 
experiment,  we may draw the following con- 
clusions for the glass under study here: 

( i )The  relatively small subcritical crack 

growth prior to failure o f  the re-annealed surfaces 
in Fig. 8 reinforces our earlier conclusion con- 
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Figure 8 Crack response in strength 
tests on annealed soda-lime glass in 
vacuum or dry nitrogen. Arrows 
designate failure condition cr = % 
at onset of unstable equilibrium. 
Specimens tested either as-indented 
(closed symbols) or re-annealed 
after contact (open symbols), with 
each symbol representing different 
run. Starting crack from Vickers 
indentation, P* = 50 N. Stress rate 
6 a = 3.2 MPa sec -1 . 
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Figure 9 Crack response in strength 
tests on tempered glass (aR = 
128 MPa) in vacuum and dry nitro- 
gen. Arrows designate failure 
condition. Specimens tested as- 
indented, with each symbol repre- 
senting different run. Starting crack 
from Vickers indentation, P * =  
50 N. Stress rate h a = 30 MPa sec -1 . 

cerning the minor role of  kinetic effects in the 
strength determination. 

(ii) Conversely, the relatively large extent of  
subcritical growth shown by the as-indented 
surfaces confirms the existence of  significant 
residual-stress components in the crack driving 

forces, and, in particular, the attendant existence 
of  an energy barrier to failure. 

(iii) The sign o f  the residual stress component 
is such as to cause a general lowering of  strength. 

(iv) The tempered surface is stronger than the 
annealed surface by an amount approximately 
equal to the surface compression, in accordance 
with Equation 10b. 

4. Implications in strength degradation 
We now derive relations for the degraded strength 
o f  brittle surfaces in terms of  the load delivered 
in sharp contact, as in Fig. 1, and compare the 
predicted degradation characteristics with experi- 
mental observations. We confine our attention 
here to contact conditions of  sufficient severity 
that the indentation crack constitutes the dom- 
inant flaw in the specimen, mindful that there 
will be a low-load cut-off in the degradation [9]. 
A number of  interesting contact configurations, 
according to surface stress states a s and as,, will 
be analysed, with particular attention paid in 
each case to the role of  residual stress terms. 

4 . 1 .  Theore t i ca l  de r i va t i ons  
It is necessary now to recall the equilibrium 

indentation equations given as Equation 7 in 

Part 1 [1]" 

x J ' / e  312 + x ~ / c  ~'~ + as( .ac)  '/= = Kc (Pt) 

(lla) 
XeP/C 3/2 Jr- )~re*/c 3/2 Jr as(f lOe) 1/2 = K c (P,~,). 

( l lb )  

4. 1.1. Stress- f ree sur faces (os = 0 = o8,) 
Consider an annealed test piece to be subjected 
to the loading sequence of  Fig. 1, free of  any 
extraneous surface stresses. In this case we have, 
from Part 1, that the characteristic size of  the 
equilibrium indentation crack at maximum con- 
tact, c*, is greater than at complete unload, 
c t ;  it is therefore the former which determines 
the size of  the starting flaw in the subsequent 
uniform tension loading. Putting a s = 0, P = P *  
into Equation 11 a thus gives 

Co = c* = [(xe + • 5/3 (12 )  

Comparison of  this relation with Equation 8b 
then leads to 

Co/Cm = [(1 + Xe/Xr)/4]~3 (13) 

The critical condition Co = Cm which distin- 
guishes between failure paths of  types 1 and 2 in 
Fig. 2 may now be restated as Xr/Xe = 1/3. Ac- 
cordingly, when co >Cm,  the test piece fails 
spontaneously under the tensile loading in the 
manner of  path 1, i.e. with a = aa at c = Co = c* 
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and a s, = 0 in Equation 6, so that, with Equation 

12, we have 

3 4 (IT~-.~)3/2}1/3/p*l/3 O = {XeKe/(Xe + Xr) 4 

(Xr/Xe < 1/3). (140) 

Alternatively, when Co •Cm,  stable crack growth 
precedes failure in the manner o f  path 2, i.e. with 
0 = o  a = o  m a t c = c m  a n d % , = 0 i n E q u a t i o n 6 ;  
recourse to Equation 8b then gives 

o = {27K 4/256X~(TrFZ) 3/~ }1/3/p.,/3 

(Xr/Xe >/1/3) .  (14b) 

It may be noted that the simple power relation, 
oP .1 /3= constant, applies in both cases, the 
difference in the two proportionality constants 
being determined uniquely by the X parameters. 
We may also note that in the limit of  Xr -+0, 
Equation 140 necessarily applies, and with Xe -+ X, 
reduces to an earlier degradation formulation [9]. 

4. 1.2. Pro-stressed surface taken to failure 
during contact (08 > O) 

Consider n o w  a s i tua t ion  s imi lar  to  tha t  descr ibed 

in section 4.1.1, but this time with the tensile 
stress responsible for failure acting simultaneously 
with rather than subsequent to the indentation 
event (in this case, of  course, there is no need to 
specify any stress state Os') [11].  The function 
[P(e)]o8 transformed from Equation l i a  passes 
through a maximum at (3P/3c)o s = 0, i.e. at 

ce = [4(Xe + Xr)Pc/Ke] 2/3 = 9K2e/16M20~, 

(15) 

which accordingly represents a critical crack depth 
for failure*. It may be noted that the same result 
is obtained by evaluating the maximum at 
(3~rs/Oe)p = 0 for the transformed function 
[Us(C)]e, i.e. the failure point is independent 
of  loading path. In this latter case the crack size 
prior to application o f  the stress u s is given by 
Equation 12, whence, with Pc = P* in Equation 
15, we have co/ee = 1/4 2/3: This simply confirms 
that stable crack growth must precede failure in 
this mode. Substitution of  Equation 15 into 
Equation l l a  to determine the failure condition 
o = Os at e = e m  leads to 

0 = {27K4/256(Xe + Xr)(rra)3/2}'/a/Ple/a. 

(16) 

This equation has the same form as the earlier 
strength degradation equation (Equation 14b), 
reflecting the common requirement o f  an energy 
barrier to failure; the present configuration is seen 
to be potentially more catastrophic, by an amount 
again determined uniquely by the X parameters. 
Finally, we may duly acknowledge that if we 
replace Xe + X~ with X, Equation 16 is equivalent 
to an earlier derivation [11 ].  

4. 1.3. Pre-stressed surface taken to failure 
after contact (G ~ O. o8' = O) 
In this case the surface in pre-stress survives the 
contact, and is taken to failure subsequently with 
the pre-stress removed. Relative to the situation 
described in Section 4.1.1 above, it might be 
expected that the effect o f  the superimposed 
stress a s in the contact stage would be to depress 
or enhance the strength, depending on whether 
a s be tensile or compressive. The possibility now 
exists that the median cracks may extend down- 
ward during indenter unloading, so we need to 
consider two alternatives for the starting flaw 
size co, namely c* or c ? (Section 2). First, when 
such downward extension does not occur, the 
pertinent crack dimension is c*, given in implicit 
form by Equation 11 a at P = P*,  

(Xe -I'- X~:)P*/c .3/2 + O s ( r r g 2 c * )  1/2 = Ke. 

(17) 

With the aid of  Equation 8b, the critical con- 
dition c* = C 0 = C m becomes X e / ~ r  = 3 -- 2x, 
where 

A Xrk ) / e ~ s r �9 = {256" rlr~'~3/2/K411/300*1/3 

The critical ratio X~IXe is therefore elevated 
above the stress free value 1/3 for o s > 0 ,  and 
conversely diminished for o s < 0. In the region 
Co >Cm,  putting o = Oa at e = Co = e*, Os' = 0, 
into Equation 6 does not lead to an explicit 
function o(P*), making it necessary to resort 
to a numerical solution. However, for Co ~<cm, 
Equation 6 with o = o a = o m at c = em, G s' = 0, 

*Here we use a subscript c in place of a superscript asterisk used in a previous paper [11 ] to denote the critical con- 
ditions - this is to distinguish from the alternative meaning of the asterisk notation adopted in the present work. 
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in conjunction with Equation 8b, reduces simply 
to 

cr = {27K 4/256 Xr(Trg2) a/2 }l/a/p. 1/3 

[xrlXe >t 1/(3 -- A)] .  (18) 

Comparison with the analogous expression Equa- 
tion 14b for stress-free surfaces reveals an identical 
strength function o ( P * ) - t h e  existence of the 
energy barrier in the failure test washes out any 
prospective effect of the superimposed stress os 
on the ultimate strength. The only way Os enters 
Equation 18 is via A in the conditional inequality; 
viewed in terms of Fig. 2, variations in o s manifest 
themselves solely as lateral displacements of  Co 
relative to Cm. Turning to the second possibility 
where downward crack extension does occur 
during indenter unloading, the pertinent starting 
crack dimension is c t corresponding to P = 0 and 
o s = 0 in Equation 1 lb,  i.e. 

Co = c t = (Xff'*/Kc)2/a; (19) 

comparison with Equation 8b gives immediately 
Co/Cm= 1/42/a; the condition Co ~<cm is there- 
fore satisfied automatically in this case, whence 
Equation 18 is again applicable. 

indentation to the strength testing apparatus is not 
great enough to cause the critical condition Co = 
Cm to be exceeded. The results reported here were 
conducted in an inert oil environment, and as such 
may even more justifiably be regarded as per- 
taining to equilibrium fracture requirements. 

Fig. 10 shows results for annealed glass tested 
as described in Sections 4.1.1 and 4.1.2 above. 
From Equations 16 and 14b, the degraded 
strengths with the indentation and applied stress 
fields acting simultaneously as compared to 
sequentially are in the ratio [Xr/(Xe + Xr)] 1/3= 
0.77. This ratio will tend to unity for materials 
in which ?G becomes the dominant indentation 
parameter; in this limit the indentation field inten- 
sity will not diminish on unloading, so it becomes 
irrelevant whether the failure stress is applied 
during or after the contact event. At the other 
extreme of ~ - ~  0, comparison of Equations 16 
and 14a shows this strength ratio to be 0.47, 
representing the maximum possible divergence 
between the two stressing configurations. 

4. 1.4. Tempered  surfaces (os = - -  OR = es') 
The analysis of  Section 4.1.3 holds, with - OR in 
place of o s in the A term and, more importantly, 
since the surface compression persists in the 
strength test, with -- a s, = OR added to the right- 
hand side of  Equation 18 in accordance with 
Equation 10. 

4.2.  Expe r imen ta l  da ta  
We now investigate the level of agreement between 
the predictions of the above formulation and 
experimental degradation results. Thus in Figs. 
10 to 12 the shaded bands, representing calcu- 
lated strength characteristics, are to be compared 
with the data points. The calculations are based 
on the following parameters, evaluated for our 
glass in Part 1 : Ke = (0.75 +- 0.05 MPa m 1/2 , 
g2=0.30+_0.08, Xe=0-032+0 .008  and Xr= 
0.026 +0.003. The ratio Xr/Xe = 0.81 is suffic- 
iently large to guarantee the existence of an energy 
barrier to failure under any of the surface stress 
conditions to be considered here. Our observations 
of precursor stable crack growth in the crack 
response plots of Figs. 8 and 9 confirm this, and 
demonstrate moreover that spurious slow crack 
growth during transfer of the specimens from the 
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Figure 10 Failure stress as function of contact load, 
for Vickers indentations on annealed soda-lime glass 
discs. Each data point represents mean and standard 
deviation of 8 to 10 tests. Lower results for tests with 
indentation and applied stress fields acting simultaneously, 
upper results for tests with same fields applied sequent- 
ially. Horizontal band is cut-off strength level determined 
by pre-present flaw distribution on as-received surfaces. 
Data after [ 11 ]. 
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Figure l l  Failure stress as function of contact load, for Figure 12 Failure stress as function of contact load, for 
Vickers indentations on pre-stressed soda-lime glass Vickers indentations on thermally tempered soda-lime 
discs. Each data point represents mean of 8 to 10 tests glass discs. Data points represent individual tests, except 
(error bars o m i t t e d -  see Fig. 10 for typical values), those with error bars (mean and standard deviations 
Horizontal band is cut-off strength level determined of 8 to 10 tests). Horizontal band is cut-off strength 
by pre-present flaw distribution on as-received surfaces, level determined by pre-present flaw distribution on 
Broken lines represent predicted degradation charac- as-receivedsurfaces. Dataafter [6]. 
teristics for purely elastic contact field. 

The next set of results, Fig. 11, relates to the 
conditions of Section 4.1.3. In this plot the main, 
shaded band is the prediction of Equation 18 for 
all values of pre-stress a s satisfying the inequality 
Xr/Xe ~ 1/(3--A).  The data points are seen to 
confirm the predicted independence of as. For 
comparison, degradation characteristics evaluated 
on the basis of a purely elastic contact are also 
plotted in Fig. 11, for each of the experimental 
values of as: these evaluations are made in the 
manner outlined for the region Co 2> cm in Section 
4.1.3, with Xr = 0 and Xe = X adjusted to give a 
fit to the shaded line at a s = 0. It is evident that 
the observed results can only be explained in terms 
of a model which incorporates the residual stress 
effects. 

Finally, we show in Fig. 12 some results for 
thermally tempered glass plate. Comparison of 
the results with the broken line representing 
a s, = 0 (from Fig. 11) demonstrates the strength- 
ening that can be achieved by maintaining an 
internal surface compression OR throughout the 
period of exposure to applied tensile fields. 

In absolute terms, we may conclude that the 
modified degradation theory, in conjunction 
with the "calibration" procedures of Part 1 [1], 
is capable of predicting strength characteristics 
to within a typical scatter band of ~ 10%. 

5. Discussion 
By incorporating residual stress effects into the 
indentation-strength fracture mechanics, we have 
established a basis for absolute predictions of 
the strength of brittle components under poten- 
tially degrading contact conditions. Whilst a 
model contact system has been used to illustrate 
the essential mechanics of strength degradation, 
the present analysis has general application. Thus, 
whereas our experimental data have been obtained 
on a specific soda-lime glass, there is nothing in 
the theory to preclude a similar analysis of other 
brittle materials, provided some care is taken to 
allow for possible effects of mierostructural 
inhomogeneity and mechanical anisotropy. Again, 
although we have given explicit attention only to 
quasistatic loading conditions, extension to the 
practically important problem of sharp particle 
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Figure 13 Fractional component of indentation constant 
due to residual field, as function of as-indented-re- 
annealed strength ratio. Sodaqime glass datum, this 
work; other materials (including three WC-Co com- 
positions), after [20]. 

impact can be readily made via an appropriate 
impulsive load-particle velocity relation [7]. The 
present equilibrium equations may also be used 
as a base for incorporating kinetic effects: al- 
though such effects are unlikely to influence 
events significantly in the relatively stable growth 
conditions of the indentation fracture cycle 
[16], they will certainly be expected to have 
important repercussions in the stressing to failure 
[12]. 

One particularly interesting outcome of the 
present strength formulation i s  the predicted 
existence of an energy barrier to failure in certain 
circumstances. As indicated in Section 2, the 
requirement for activation over such a barrier 
is that the median cracks be driven by the applied 
stress field to a depth era, in which case the initial 
depth co no longer plays a part in the strength 
determination. This point has an important 
bearing on such questions as the relative suscept- 
ibilities to failure of components stressed during 
versus after the contact event (Fig. 10), or whether 
the surface stress history during service is likely 
to be a significant factor (eL Figs. 11 and 12). 
As an example of the second question, we may 
cite the studies of Kirchner and Gruver on local- 
ized impact damage in pre-stressed ceramic plates 
[17-19] : these workers noted that the extent of 
contact cracking diminished as the surface pre- 
stress changed from tensile to compressive, and 

thence suggested that components should be 
designed with exposed surfaces in compression. 
The present work suggests that such suggestions 
should not be implemented without a careful 
appraisal of residual stress effects associated with 
the damage configuration. 

It is in this context of an activated mode of 
failure that the relative values of Xe and Xr are 
specially pertinent. We have indicated in Part 1 
how these parameters may be evaluated from 
fractographic observations of median crack evo- 
lution [1]. A less demanding procedure for 
achieving the same end is to make use of indent- 
ation-strength data of the type shown in Fig. 8, 
comparing the strengths of originally stress-free 
surfaces in the as-indented and re-annealed states. 
For as-indented surfaces, the degradation formulae 
given in Equation 14 are applicable; the corres- 
ponding formula for re-annealed surfaces may be 
derived in exactly the same way as Equation 14a, 
but with Xr = 0 in Equation 6, giving 

0 = Xe + Xr)(TE~"~)3'2}l/31p*I/3. 

This relation, together with Equation 14, may be 
used to determine Xr and Xe without any need 
to measure crack dimensions. If we simply com- 
pare the two sets of formulae at a fixed value of 
P* we may derive expressions for the fractional 
component of the total indentation constant 
X =Xe + Xr attributable to the residual field, 
noting that the critical condition Xr/• = 1/3 
transforms to Xr/• = 1/4: 

Xr/X = 1 -- o/a' (XJX < 1/4) 

Xr/• = (271256)(o'1o) 3 (Xr/X> 1/4). 

Failure may then be regarded as spontaneous in 
the range 0 ~< Xr/X < 1/4, and activated in the 
range 1/4 ~< Xr/X ~< 1. A plot of Xr/X versus o/(r' is 
given in Fig. 13, together with data points repre- 
senting relative strength measurements from 
several materials. It is apparent that the magnitude 
of the residual stress effect may vary considerably, 
ernphasising the need to assess each individual 
material for prospective degradation resistant 
application on its own merits. 
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